
WCAG-Zoo Documentation
Release 0.2.0

Samuel Spencer

Aug 09, 2017





Contents:

1 API documentation 1

2 Command list 3

3 Frequently Asked Questions 5
3.1 Can I use this to check my sites accessibility at different breakpoints? . . . . . . . . . . . . . . . . . 5
3.2 Why is it important to check the accesibility of hidden elements? . . . . . . . . . . . . . . . . . . . 6
3.3 Why does my page fail a contrast check when the contrast between foreground text color and a

background image is really high? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Why doesn’t WCAG-Zoo support Python 2? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Guide to writing tests for commands 9

5 Using WCAG-Zoo in other languages 11
5.1 Node.JS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Using WCAG-Zoo validators in python 15

7 WCAG guideline index and validator reference 17
7.1 Future additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Disclaimer 19

9 What is it? 21

10 Why should I care about accessibility guidelines? 23

11 That sounds like a lot of work, is it really that useful? 25

12 But all my pages are dynamically created and I use a CSS pre-processor 27

13 But I have lots of user-generated content! How can I possibly test that? 29

14 Do I have to check every page? 31

15 You convinced me, how do I use it? 33

i



16 I’ve done all that can I have a badge? 35

17 Installing 37

18 How to Use 39

19 Limitations 41

20 Indices and tables 43

Python Module Index 45

ii



CHAPTER 1

API documentation

class wcag_zoo.utils.WCAGCommand(*args, **kwargs)
The base class for all WCAG validation commands

classmethod as_cli()
Exposes the WCAG validator as a click-based command line interface tool.

check_skip_element(node)
Performs checking to see if an element can be skipped for validation, including check if it has an id or
class to skip, or if it has a CSS rule to hide it.

THis class calls WCAGCommand.skip_element to get any additional skip logic, override
skip_element not this method to add custom skip logic.

Returns True if the node is to be skipped.

run_validation_loop(xpath=None, validator=None)
Runs validation of elements that match an xpath using the given validation method. By default runs
self.validate_element

skip_element(node)
Method for adding extra checks to determine if an HTML element should be skipped by the validation
loop.

Override this to add custom skip logic to a wcag command.

Return true to skip validation of the given node.

validate_document(html)
Main validation method - validates an entire document, single node from a HTML tree.

Note: This checks the validitity of the whole document and executes the validation loop.

By default, returns a dictionary with the number of successful checks, and a list of failures, warnings and
skipped elements.

validate_element(node)
Validate a single node from a HTML element tree. Errors and warnings are attached to the instances
failures and warnings properties.

1



WCAG-Zoo Documentation, Release 0.2.0

By default, returns nothing.

validate_file(filename)
Validates a file given as a string filenames

By returns a dictionary of results from validate_document.

validate_files(*filenames)
Validates the files given as a list of strings of filenames

By default, returns nothing.

validate_whole_document(html)
Validates an entire document from a HTML element tree. Errors and warnings are attached to the instances
failures and warnings properties.

Note: This checks the validatity of the whole document, but does not execute the validation loop.

By default, returns nothing.

wcag_zoo.utils.build_msg(node, **kwargs)
Assistance method that builds a dictionary error message with appropriate references to the node

wcag_zoo.utils.get_applicable_styles(node)
Generates a list of dictionaries that contains all the styles that could influence the style of an element.

This is the collection of all styles from an element and all it parent elements.

Returns a list, with each list item being a dictionary with keys that correspond to CSS styles and the values are
the corresponding values for each ancestor element.

2 Chapter 1. API documentation



CHAPTER 2

Command list

class wcag_zoo.validators.anteater.Anteater(*args, **kwargs)
Anteater checks for alt and title attributes in image tags in HTML against the requirements of the WCAG2.0
standard

class wcag_zoo.validators.ayeaye.Ayeaye(*args, **kwargs)
Checks for the existance of access key attributes within a HTML document and confirms their uniqueness. Fails
if any duplicate access keys are found in the document Warns if no access keys are found in the document

class wcag_zoo.validators.molerat.Molerat(*args, **kwargs)
Molerat checks color contrast in a HTML string against the WCAG2.0 standard

It checks foreground colors against background colors taking into account opacity values and font-size to con-
form to WCAG2.0 Guidelines 1.4.3 & 1.4.6.

However, it doesn’t check contrast between foreground colors and background images.

Paradoxically:

a failed molerat check doesn’t mean your page doesn’t conform to WCAG2.0

but a successful molerat check doesn’t mean your page will conform either...

Command line tools aren’t a replacement for good user testing!

class wcag_zoo.validators.parade.Parade(*args, **kwargs)
Run a number of validators together across a file or collection of files in a single command.

class wcag_zoo.validators.tarsier.Tarsier(*args, **kwargs)
Tarsier reads heading levels in HTML documents (H1,H2,...) to verify the order and completion of headings
against the requirements of the WCAG2.0 standard.

3



WCAG-Zoo Documentation, Release 0.2.0

4 Chapter 2. Command list



CHAPTER 3

Frequently Asked Questions

Can I use this to check my sites accessibility at different breakpoints?

Yes! Making sure your site is accessible at different screen sizes is important so this is vitally important. By default,
WCAG-Zoo validators ignore @media rules, but if you are using CSS @media rules to provide different CSS rules
to different users, you can declare which media rules to check against when running commands.

These can be added using the --media_rules command line flag (-M) or using the media_rules argument in
Python. Any CSS @media rule that matches against any of the listed media_rules to check will be used, even if
they conflict.

For example, below are some of the media rules used in the Twitter Bootstrap CSS framework

1. @media (max-device-width: 480px) and (orientation: landscape) {
2. @media (max-width: 767px) {
3. @media screen and (max-width: 767px) {
4. @media (min-width: 768px) {
5. @media (min-width: 768px) and (max-width: 991px) {
6. @media screen and (min-width: 768px) {
7. @media (min-width: 992px) {
8. @media (min-width: 992px) and (max-width: 1199px) {
9. @media (min-width: 1200px) {

The following command will check rules 4, 5 and 6 as all contain the string (min-width: 768px):

zookeeper molerat --media_rules="(min-width: 768px)"

Note that this command will check media rules where the maximum width is 767px and the minimum width is 768px:

zookeeper molerat -M="(min-width: 768px)" -M="(max-width: 767px)"

In reality a browser would never render these as the rules conflict, but zookeeper isn’t that smart yet.

5

http://getbootstrap.com/


WCAG-Zoo Documentation, Release 0.2.0

Why is it important to check the accesibility of hidden elements?

Elements such as these often have their visibility toggled using Javascript in a browser, as such testing hidden elements
ensures that if they become visible after rendering in the browser they conform to accessibility guidelines.

By default, all WCAG commands check that hidden elements are valid, however they also accept a ignore_hidden
argument (or -H on the command line) that prevents validation of elements that are hidden in CSS, such as those
contained in elements that have a display:none or visibility:hidden directive.

Why does my page fail a contrast check when the contrast between
foreground text color and a background image is really high?

Molerat can’t see images and determines text contrast by checking the contrast between the calculated CSS rules for
the foreground color (color) and background color (background-color) of a HTML element. If the element
hasn’t got a

Consider white text in a div with a black background image but no background color, inside a div with a white back
ground, like that demonstrated below

+--------------------------------------------------+
| (1) Black text / White background |
| |
| +-----------------------------------------+ |
| | <div class='inner' id='hero_text'> | |
| | (2) White text / Transparent background | |
| | Black bckrgound image | |
| | | |
| +-----------------------------------------+ |
+--------------------------------------------------+

In the above example, until the image loads the text in div (2) is invisible. If the connection is interrupted or a user
has images disabled, the text would be unreadable. The ideal way to resolve this is to add a background color to
the inner ‘‘div‘‘ to ensure all users can read it. If this isn’t possible, to resolve this error, add the class or id to the
appropriate exclusion rule. For example, from the command line:

zookeeper molerat somefile.html --skip_these_classes=inner
zookeeper molerat somefile.html --skip_these_ids=hero_text

Or when calling as a module:

Molerat(..., skip_these_classes=['inner'])
Molerat(..., skip_these_ids=['hero_text'])

Why doesn’t WCAG-Zoo support Python 2?

Python 2 is on a long deprecation cycle, and a number of big libraries (such as Django) are beginning the process to
remove Python 2 support entirely. Making WCAG-Zoo Python 3 only made building it much easier and removed the
need for Python2/3 hacks to support both properly.

If you are building a Python 2 tool and absolutely need support you have a number of options

• Download the code to a place your Python 2 code can import it

6 Chapter 3. Frequently Asked Questions



WCAG-Zoo Documentation, Release 0.2.0

• Use the demonstration scripts as way to run the WCAG-Zoo command line tools from within Python 2 code
using subprocess and parse the JSON

• Consider how import Python 2 is to you or your users and port your code to Python 3 (its not as painful as you
think now and there are benefits)

3.4. Why doesn’t WCAG-Zoo support Python 2? 7



WCAG-Zoo Documentation, Release 0.2.0

8 Chapter 3. Frequently Asked Questions



CHAPTER 4

Guide to writing tests for commands

To make writing tests easier, tests can be declaratively written in HTML using data-* attributes to specify the
command to check a HTML document against, and the expected errors.

The available attributes are:

• data-wcag-test-command (only on the root html element) - the specific zookeeper validator to use
for the HTML file.

• data-wcag-arg-\* (only on the root html element) - attributes starting with data-wcag-arg-
specify arguments to pass when running the given command. Each attribute constitutes a key/value pair,
with the key corresponding to everything captured by the asterisk (*) above. All values are evaluated in
Python and are expected to be valid Python literals - as such numbers are treated as numbers, booleans are
booleans, and strings need to be double quoted.

• data-wcag-failure-code and data-wcag-warning-code - can be located on any element in the body.
These specify both that a given node should produce a failure or warning when using the above command
and arguments, as well as the expected error code.

Below is an example that tests the molerat command, for WCAG 2.0-AA compliance and checks using a specific
media rule to check a page for use on small screens.

<html
data-wcag-test-command="molerat"
data-wcag-arg-level="'AA'"
data-wcag-arg-skip_these_classes="'sneaky'"
data-wcag-arg-media_rules="['max-width: 600px']">
<head>

<style>
.snarky {

color: white;
background-color: black;

}
@media (max-width: 600px) {
.snarky {

color: black;
}

9



WCAG-Zoo Documentation, Release 0.2.0

}
</style>

</head>
<body>

<div class="snarky" data-wcag-failure-code="molerat-1">
I hate mobile phones, but if you are
reading this page on a mobile you'll never know!!

</div>
<div class="snarky sneaky">

And I'll make sure you never see this either!
And the zookeeper will never tell!

</div>
<p>

Welcome to my page!
</p>
</div>

</body>
</html>

This is equivilent to running the following at the command line:

zookeeper molerat the_file_above.html \
--level=AA \
--media_rules='max-width: 600px' \
--skip_these_classes=sneaky

or the following python command:

from wcag_zoo.validators.molerat import Molerat

validator = Molerat(
level="AA",
media_rules=['max-width: 600px'],
skip_these_classes=["sneaky"]
).validate_document(the_text_above)

10 Chapter 4. Guide to writing tests for commands



CHAPTER 5

Using WCAG-Zoo in other languages

Below are a small number of example scripts that show how to call the WCAG-Zoo scripts from a number of target
languages to provide runtime support for accessibility checking.

All of the following snippets will either:

• Store a specified string my_html as the temporary file accessed by the variable tmp_file or

• Pass a specified string my_html into the command via stdin

Then:

1. Execute the WCAG command wcag_zoo.validators.tarsier using Python and store the result as
results

2. Capture the results string and parse it from JSON into the variable json_results

3. Prints the number of failures for the file

All of the following scripts are public domain samples and not guaranteed to work in production in any way. All
scripts should output something similar to /tmp/wcag117015-32930-onps7o 1 failures

Node.JS

File based:

Assuming you have temp installed using npm install temp:

#!/usr/bin/env node
var temp = require('temp'),

fs = require('fs'),
exec = require('child_process').exec;

temp.open('wcag', function(err, info) {
if (!err) {
fs.write(info.fd, "<html><head><body><h2>This is wrong, it should be h1");
fs.close(info.fd, function(err) {

11

http://github.com/bruce/node-temp/


WCAG-Zoo Documentation, Release 0.2.0

exec("zookeeper tarsier '" + info.path + "' -F",
function(err, stdout) {
results = stdout;
json_results = JSON.parse(results);
console.log(

json_results[0][0],
json_results[0][1].failures.length,
"failures"

);
}

);
});

}
});

Perl

File based:

#!/usr/bin/env perl
require File::Temp;
use File::Temp ();
use File::Temp qw/ :seekable /;
use JSON;

$my_html = "<html><head><body><h2>This is wrong, it should be h1";

$tmp = File::Temp->new();
print $tmp $my_html;
$tmp->seek( 0, SEEK_END );

$fn = $tmp->filename;

$results = `zookeeper tarsier $fn -J`;
@json_results = decode_json($results);
$filename = @{@{@json_results[0]}[0]}[0];
$len = scalar @{@{@{@{@json_results[0]}[0]}[1]}{'failures'}};
print "$filename $len failures\n";

Python

Included for reference, but WCAG-Zoo can be used in Python by importing validators directly.

File based:

#!/usr/bin/env python2
from __future__ import print_function
import json
import tempfile
import subprocess

my_html = "<html><head><body><h2>This is wrong, it should be h1"

12 Chapter 5. Using WCAG-Zoo in other languages



WCAG-Zoo Documentation, Release 0.2.0

tmp_file = tempfile.NamedTemporaryFile()
tmp_file.write(my_html)
tmp_file.seek(0)

process = subprocess.Popen(
["zookeeper", "tarsier", tmp_file.name, "-F"],
stdout=subprocess.PIPE

)

results = process.communicate()[0]
json_results = json.loads(results)

print(json_results[0][0],
len(json_results[0][1]['failures']),
"failures"

)

Ruby

Assuming you have installed json like so: gem install json

File based:

#!/usr/bin/env ruby
require 'json'
require 'tempfile'

my_html = "<html><head><body><h2>This is wrong, it should be h1"

tmp_file = Tempfile.new('foo')
tmp_file.write(my_html)
tmp_file.close

results = `zookeeper tarsier #{tmp_file.path} -F`
json_results = JSON.parse(results)
print json_results[0][0], " ", json_results[0][1]['failures'].size, " failures\n"

5.4. Ruby 13



WCAG-Zoo Documentation, Release 0.2.0

14 Chapter 5. Using WCAG-Zoo in other languages



CHAPTER 6

Using WCAG-Zoo validators in python

As WCAG-Zoo is a native Python 3 library, it can be imported and used in Python 3 scripts easily.

Once installed from pip (pip install wcag_zoo), load any of the validators and call validate_document
on an instance as shown in the example below.

#!/usr/bin/env python3
from wcag_zoo.validators.tarsier import Tarsier

my_html = b"<html><head><body><h2>This is wrong, it should be h1"
instance = Tarsier()
results = instance.validate_document(my_html)

print("/no/tmp/dir", len(results['failures']), "failures")

15



WCAG-Zoo Documentation, Release 0.2.0

16 Chapter 6. Using WCAG-Zoo validators in python



CHAPTER 7

WCAG guideline index and validator reference

This is an index of Web Accessibility Content Guidelines that can be verified using WCAG-Zoo as well as the tech-
niques used for verification and the validators which perform the validation.

• 1.1.1 - Nontext Content

– H37: Using alt attributes on img elements - anteater

• 1.3.1 - Info and Relationships

– H42: Using h1-h6 to identify headings - tarsier

• 1.4.3 - Contrast (Minimum)

– G18: Ensuring that a contrast ratio of at least 4.5:1 exists between text (and images of text) and background
behind the text - molerat

– G145: Ensuring that a contrast ratio of at least 3:1 exists between text (and images of text) and background
behind the text - molerat (large text only)

• 1.4.6 - Contrast (Enhanced)

– G17: Ensuring that a contrast ratio of at least 7:1 exists between text (and images of text) and background
behind the text - molerat (using AAA compliance)

– G18: Ensuring that a contrast ratio of at least 4.5:1 exists between text (and images of text) and background
behind the text - molerat (large text only, using AAA compliance)

• 2.1.1 - Keyboard

– G90: Providing keyboard-triggered event handlers - ayeaye (check for clashes with accesskeys).

Future additions

The following guidelines and techniques have been identified as potential additions to the WCAG-Zoo.

• 1.1.1 - Nontext Content

17

https://www.w3.org/TR/UNDERSTANDING-WCAG20/text-equiv-all.html
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/H39
https://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/H42
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G18
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G18
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G145
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G145
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast7.html
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G17
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G17
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G18
http://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G18
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G90


WCAG-Zoo Documentation, Release 0.2.0

– H53, H44

– H36 - Make sure input tags with src have alt or text

– H30 - Make sure links have text

• 1.2.3 - Audio Description or Media Alternative (Prerecorded) - H96

• 1.3.1 - Info and Relationships

• 2.4.1 - Bypass blocks - H69

• 2.4.2 - Page titled - H25 + G88 (very basic)

• 2.4.7 - Focus Visible - ( for :focus)

• 3.1.1 - Language of Page - H57

• 4.1.1 - Parsing H74, H75

18 Chapter 7. WCAG guideline index and validator reference



CHAPTER 8

Disclaimer

WCAG-Zoo does not gaurantee complete compliance with the Web Content Accessibility Guidelines. There are many
aspects of the WCAG recommendations that are subjective and are difficult or even impossible to verify automatically.

Where WCAG compliance is a contractual or legislative requirement, always speak to an accesibility expert.

19



WCAG-Zoo Documentation, Release 0.2.0

20 Chapter 8. Disclaimer



CHAPTER 9

What is it?

WCAG-Zoo is a set of command line tools that help provide basic validation of HTML against the accessibility
guidelines laid out by the W3C Web Content Accessibility Guidelines 2.0.

Each tool checks against a limited set of these and is designed to return simple text output and returns an error (or
success) code so it can be integrated into continuous build tools like Travis-CI or Jenkins. It can even be imported into
your Python code for additional functionality.

21



WCAG-Zoo Documentation, Release 0.2.0

22 Chapter 9. What is it?



CHAPTER 10

Why should I care about accessibility guidelines?

Accessibility means that everyone can use your site. We often forget that not everyone has perfect vision - or even has
vision at all! Complete or partial blindess, color-blindness or just old-age can all impact how readily accessible your
website can be.

By building accessibility checking into your build scripts you can be relatively certain that all people can readily use
your website. And if you come across an issue, you identify it early - before you hit production and they start causing
problems for people.

Plus, integrating accessibility into your build scripts shows that you really care about the usability of your site. These
tools won’t pick up every issue around accessibility, but they’ll pick up enough (and do so automatically) and helps
demonstrate a commitment to accessibility where possible.

23



WCAG-Zoo Documentation, Release 0.2.0

24 Chapter 10. Why should I care about accessibility guidelines?



CHAPTER 11

That sounds like a lot of work, is it really that useful?

Granted, accessibility is tough - and you might question how useful it is. If you have an app targeted to a very niche
demographic and are working on tight timeframes, maybe accessibility isn’t important right now.

But some industries, such as Government, Healthcare, Legal and Retail all care a lot about WCAG compliance. To the
point that in some areas it is legislated or mandated. In some cases not complying with certain accessibility guidelines
can even get sued can lead to large, expensive lawsuits!

If you care about working in any of the above sectors, being able to prove you are compliant can be a big plus, and
having that proof built in to your testing suite means identiying issues earlier before they are a problem.

25

https://www.w3.org/WAI/bcase/target-case-study


WCAG-Zoo Documentation, Release 0.2.0

26 Chapter 11. That sounds like a lot of work, is it really that useful?



CHAPTER 12

But all my pages are dynamically created and I use a CSS pre-processor

Doesn’t matter. If you can generate them, you can output your HTML and CSS in a build script and feed them into
the WCAG-Zoo via the command line.

27



WCAG-Zoo Documentation, Release 0.2.0

28 Chapter 12. But all my pages are dynamically created and I use a CSS pre-processor



CHAPTER 13

But I have lots of user-generated content! How can I possibly test that?

It doesn’t matter if your site is mostly user-generated pages. Testing what you can sets a good example to your users.
Plus many front-end WYSIWYG editors have their own compliance checkers too. This also sets a good example to
your end-users as they know that the rest of the site is WCAG-Compliant so they should probably endevour to make
sure their own content is too.

Since this is a Python library if you are building a dynamic site where end users can edit HTML that uses Python on
the server side you can import any of the validators directly into your code so you can confirm that the user created
markup is valid as well.

Lastly, if you are building a dynamic site in a language other than Python you can run any of the command line scripts
with the --json or -J flag and this will produce a JSON output that can be parsed and used in your preferred target
language.

For details on this see the section in the documentation titled “Using WCAG-Zoo in languages other than Python”.

29



WCAG-Zoo Documentation, Release 0.2.0

30 Chapter 13. But I have lots of user-generated content! How can I possibly test that?



CHAPTER 14

Do I have to check every page?

The good news is probably not. If your CSS is reused across across lots of your site then checking a handful of
generate pages is probably good enough.

31



WCAG-Zoo Documentation, Release 0.2.0

32 Chapter 14. Do I have to check every page?



CHAPTER 15

You convinced me, how do I use it?

Two ways:

1. In your build and tests scripts, generate some HTML files and use the command line tools so that you can verify
your that the CSS and HTML you output can be read.

2. If you are using Python, once installed from pip, you can import any or all of the tools and inspect the messages
and errors directly using:

from wcag_zoo.molerat import molerat
messages = molerat(html=some_text, ... )
assert len(messages['failed']) == 0

33



WCAG-Zoo Documentation, Release 0.2.0

34 Chapter 15. You convinced me, how do I use it?



CHAPTER 16

I’ve done all that can I have a badge?

Of course! You are on the honour system with these for now. So if you use WCAG-Zoo in your tests and like
Github-like badges, pick one of these:

• https://img.shields.io/badge/WCAG_Zoo-AA-green.svg

• https://img.shields.io/badge/WCAG_Zoo-AAA-green.svg

ReSTructured Text:

.. image:: https://img.shields.io/badge/WCAG_Zoo-AA-green.svg
:target: https://github.com/data61/wcag-zoo/wiki/Compliance-Statement
:alt: This repository is WCAG-Zoo compliant

Markdown:

![This repository is WCAG-Zoo compliant][wcag-zoo-logo]

[wcag-zoo-logo]: https://img.shields.io/badge/WCAG_Zoo-AA-green.svg "WCAG-Zoo
→˓Compliant"

35



WCAG-Zoo Documentation, Release 0.2.0

36 Chapter 16. I’ve done all that can I have a badge?



CHAPTER 17

Installing

• Stable: pip3 install wcag-zoo

• Development: pip3 install https://github.com/LegoStormtroopr/wcag-zoo

37



WCAG-Zoo Documentation, Release 0.2.0

38 Chapter 17. Installing



CHAPTER 18

How to Use

All WCAG-Zoo commands are exposed through zookeeper from the command line.

Current critters include:

• Anteater - checks img tags for alt tags:

zookeeper anteater your_file.html --level=AA

• Ayeaye - checks for the presence and uniqueness of accesskeys:

zookeeper ayeaye your_file.html --level=AA

• Molerat - color contrast checking:

zookeeper molerat your_file.html --level=AA

• Parade - runs all validators against the given files with allowable exclusions:

zookeeper parade your_file.html --level=AA

• Tarsier - tree traveral to check headings are correct:

zookeeper tarsier your_file.html --level=AA

For more help on zookeeper from the command line run:

zookeeper --help

Or for help on a specific command:

zookeeper ayeaye --help

39



WCAG-Zoo Documentation, Release 0.2.0

40 Chapter 18. How to Use



CHAPTER 19

Limitations

At this point, WCAG-Zoo commands do not handle nested media queries, but they do support single level media
queries. So this will be interpreted:

@media (min-width: 600px) and (max-width: 800px) {
.this_rule_works {color:red}

}

But this won’t (plus this isn’t supported across some browsers):

@media (min-width: 600px) {
@media (max-width: 800px) {

.this_rule_wont_work {color:red}
}

}

41



WCAG-Zoo Documentation, Release 0.2.0

42 Chapter 19. Limitations



CHAPTER 20

Indices and tables

• genindex

• modindex

• search

43



WCAG-Zoo Documentation, Release 0.2.0

44 Chapter 20. Indices and tables



Python Module Index

w
wcag_zoo.utils, 1

45



WCAG-Zoo Documentation, Release 0.2.0

46 Python Module Index



Index

A
Anteater (class in wcag_zoo.validators.anteater), 3
as_cli() (wcag_zoo.utils.WCAGCommand class method),

1
Ayeaye (class in wcag_zoo.validators.ayeaye), 3

B
build_msg() (in module wcag_zoo.utils), 2

C
check_skip_element() (wcag_zoo.utils.WCAGCommand

method), 1

G
get_applicable_styles() (in module wcag_zoo.utils), 2

M
Molerat (class in wcag_zoo.validators.molerat), 3

P
Parade (class in wcag_zoo.validators.parade), 3

R
run_validation_loop() (wcag_zoo.utils.WCAGCommand

method), 1

S
skip_element() (wcag_zoo.utils.WCAGCommand

method), 1

T
Tarsier (class in wcag_zoo.validators.tarsier), 3

V
validate_document() (wcag_zoo.utils.WCAGCommand

method), 1
validate_element() (wcag_zoo.utils.WCAGCommand

method), 1

validate_file() (wcag_zoo.utils.WCAGCommand
method), 2

validate_files() (wcag_zoo.utils.WCAGCommand
method), 2

validate_whole_document()
(wcag_zoo.utils.WCAGCommand method), 2

W
wcag_zoo.utils (module), 1
WCAGCommand (class in wcag_zoo.utils), 1

47


	API documentation
	Command list
	Frequently Asked Questions
	Can I use this to check my sites accessibility at different breakpoints?
	Why is it important to check the accesibility of hidden elements?
	Why does my page fail a contrast check when the contrast between foreground text color and a background image is really high?
	Why doesn't WCAG-Zoo support Python 2?

	Guide to writing tests for commands
	Using WCAG-Zoo in other languages
	Node.JS
	Perl
	Python
	Ruby

	Using WCAG-Zoo validators in python
	WCAG guideline index and validator reference
	Future additions

	Disclaimer
	What is it?
	Why should I care about accessibility guidelines?
	That sounds like a lot of work, is it really that useful?
	But all my pages are dynamically created and I use a CSS pre-processor
	But I have lots of user-generated content! How can I possibly test that?
	Do I have to check every page?
	You convinced me, how do I use it?
	I've done all that can I have a badge?
	Installing
	How to Use
	Limitations
	Indices and tables
	Python Module Index

